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Abstract 

This research aims to build a mathematical model for some of the products of the Company (Beiji 

Oil Refinery/ Iraq) and solve the model using the fuzzy linear programming methods in addition to that, 

how to employ these linear programming models in artificial neural networks by depending on the results 

of the optimal solution that were reached in the five methods of fuzzy linear programming since artificial 

neural networks are information processing systems that have the capabilities to imitate the human neural 

system by developing a model structure to map complex non-linear relationships and processes that are 

inherent among several influencing variables. The application side of the company implemented (Beiji Oil 

Refinery/ Iraq) in 2021, such that a neural network was trained using a data set of solved linear 

programming problems. The objective function used in this training had ten (10) variables and twenty-four 

(24) constraints equations. This trained neural network was used to optimize oil production profit for 10 

different kinds of oil; gas oil, fuel oil, diesel oil, naphtha, light puffs, heavy jet, heavy kerosene, liquid gas, 

gasoline, and white oil, such that the neural network structure consisted of 274 inputs and 11 outputs with 

a neural structure of 194 hidden neuron layers. The training algorithm used was Levenberg-Marquardt 

backpropagation.  The neural network results when compared with five methods of fuzziness and 

comparison between the methods of removing fuzzy in a linear programming model and finding the best 

method to get maximum profit. The maximum projected profit was up to 98% in a bounded and 

decomposition method increase from 993423791 IQD to 1943043833 IQD in a day. This paper will 

increase the current rate of crude oil products in Beiji Oil Refinery and increase the profit of production 

while maintaining the same quantity of raw materials for daily crude oil products. The paper reached 

several conclusions, the most prominent of which is that there is a difference in determining the optimal 

quantities of production and the reflection of this matter on revenues the total achieved when using each of 

the methods of removing fuzzy, as the results showed that the best way in terms of achieving the highest 

revenues was when using bounded and decomposition method. Therefore; the importance of this research 

lies in the topic that I dealt with, which is to make the optimal decision for production using the fuzzy linear 

programming method and artificial neural networks. 

KEYWORDS: Artificial Neural Network, Fuzzy Linear Programming, Fuzziness, Levenberg-Marquardt 

backpropagation. 

1. Introduction  

Recently, interest in the topics of optimization has increased because of their vital role in most 

scientific, engineering and administrative problems. In general, optimization is the search for the best result 

under certain conditions. The main objective of all these decisions is to either reduce the effort or increase 

the desired and desired benefit. The optimization problem consists of a real-valued objective function that 

is subject to a set of other real constraints. Due to the different nature of the objective function associated 

with optimization problems, there is no single method for solving all types of optimization problems in an 

efficient manner. Therefore, many optimization techniques have been created for different types of 

optimization problems. Optimization problems have intrinsically interesting properties, such as whether 

solutions exist or do not exist, or whether those solutions are unique or have more potential with respect to 

the situation. Linear programming (LP) is one of the most commonly used topics in optimization. It deals 

with the optimization of a linear function while satisfying a set of linear equality and/or inequality 

constraints or restrictions. In practice, a LP model involves a lot of parameters whose values are assigned 

by experts / decision makers. However, both experts and decision makers do not precisely know the value 

of those parameters in most of the cases. Therefore, fuzzy linear programming (FLP) problem was 

introduced and studied [9].  

The neuron (Greek: Nerve Cell) is the fundamental of the nerve system, neuron is a simple 

processing unit that receives and combines signals from many other neurons through filamentary input 

paths [12]. The name of artificial neural networks (ANN) indicates computational networks that attempt to 

simulate, in a great manner, the networks of neurons of the biological (human or animal) central nervous 

system. This simulation is a great (neuron-by-neuron, cell-by-cell) simulation. It borrows from the 

neurophysiologic knowledge of biological neurons and of networks such as biological neurons. As an 

outcome, it differs from conventional (digital or analog) computing machines that serve to replace, develop, 

or speed up human brain computation without regard to the organization of the computing elements and of 

their networking [2]. The foundation of the artificial neural network’s paradigm was laid in the 1950s. 

Since then, ANNs have earned significant attention because of the development of more powerful hardware 
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and neural algorithms [3]. Artificial neural networks (ANNs) are information processing systems that have 

the capabilities to imitates the human neural system by developing a model structure to map complex non-

linear relationships and processes that are inherent among several influencing variables. In a simpler term, 

it is a form of a nonlinear regression model that performs an input-output mapping using a set of weights. 

A feed-forward neural network consists of an input layer, one or more hidden layers of computation nodes, 

and an output layer of computation nodes. This ANN approach is found to be fast and efficient to model 

complex relationships among variables even in noisy environments and has been employed to solve several 

real-world problems [8].  
 

2. Definition and Concept of an Artificial Neural Networks (ANN) 

An artificial Neural Network is an information processing system that is inspired by the models of 

biological neural networks. It is an adaptive system that changes its structure or internal information that 

flows through the network during the training time. In terms of definition, Artificial Neural Network is a 

computer simulation of a "brain-like" system of interconnected processing units. Neurons are information-

processing cells and nothing more than a switch with information input and output. The switch will be 

activated if there are enough stimuli of other neurons hitting the information input. Then, at the information 

output, a pulse is sent to, for example, other neurons [1]. The biological neurons consist of four important 

basic parts: 

1. Dendrite: Receives signals from other neurons 

2. Soma: Processes the information 

3. Axon: Transmits the output of this neuron 

4. Synapse: Point of connection to other neurons 

 

 

 

 

 

 

 
 

Fig. 1: Biological and artificial neuron design. 

 

When combining two or more artificial neurons we are getting an artificial neural network.  If single 

artificial neuron has almost no usefulness in solving real-life problems the artificial neural networks, have 

it. In fact, artificial neural networks are capable of solving complex  real-life problems by processing 

information in their basic building blocks (artificial  neurons) in a non-linear, distributed, parallel and local 

way [13]. 

Artificial neural network architecture consists of: 

Input layer: This layer is responsible for receiving information (data), signals, features, or measurements 

from the external environment. These inputs are usually normalized within the limit values produced by 

activation functions. 

Hidden layer: These layers are composed of neurons which are responsible for extracting patterns 

associated with the process or system being analyzed. These layers perform most of the internal processing 

from a network. 

 Output layer: This layer is also composed of neurons, and thus is responsible for producing and presenting 

the final network outputs, which result from the processing performed by the neurons in the previous layers 

[11].  
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Fig. 2: Represents the architecture of ANNs 
3. Learning or Training Artificial Neural Networks 

The learning of neural networks may be called training the property that is of primary significance for 

a neural network, is the ability of the network to learn from the environment, and to improve its performance 

through learning. Usually, they can be employed by any given type of artificial neural network architecture. 

Each learning paradigm has many training algorithms. Learning is divided into three types [13]: 

1. Supervised learning: Supervised learning is a machine learning technique that sets the parameters of an ANN 

from training data. The task of the learning ANN is to set the value of its parameters for any valid input value 

after having seen the output value. The training data consist of pairs of input and desired output values that are 

traditionally represented in data vectors. 

2. Unsupervised learning: Unsupervised learning is a machine learning technique that sets parameters of an 

ANN based on given data and a cost function which is to be minimized. Cost function can be any function and 

it is determined by the task formulation. Unsupervised learning is mostly used in applications that fall within 

the domain of estimation problems such as statistical modelling, compression, filtering, blind source separation 

and clustering. 

3. Reinforcement learning: Reinforcement learning is a machine learning technique that sets parameters of an 

ANN, where data is usually not given, but generated by interactions with the environment. Reinforcement 

learning is concerned with how an artificial neural network ought to take actions in an environment to 

maximize some notion of long-term reward. 

4. Feed-forward Artificial Neural Networks 

Artificial neural network with feed-forward topology is called Feed-Forward Neural Network (FFNN) 

and as such has only one condition: information must flow from input to output in only one direction with no 

back-loops. There are no limitations on number of layers, type of transfer function used in individual artificial 

neuron or number of connections between individual artificial neurons [13].  

5. Backpropagation Algorithm 

In order to train the established FFNN, the Back Propagation (BP) algorithm can be utilized. 

Considering a multilayer FFNN, such as the one with a three-layer. the BP algorithm is a method for training 

the weights in a multilayer feed-forward neural network. As such, it requires a network structure to be defined 

of one or more layers where one layer is fully connected to the next layer. A standard network structure is one 

input layer, one hidden layer, and one output layer. BP can be used for both classification and regression 

problems. It is a gradient descent technique that is used to minimize the output error based on the updated 

network weights [14].  
 

6. Levenberg-Marquardt Backpropagation 

The Levenberg-Marquardt algorithm, also known as the damped least squares (DLS) method, is used 

to solve non- linear least squares problems. While backpropagation is a steepest descent algorithm, the 

Levenberg-Marquardt algorithm is derived from Newton’s method that was designed for minimizing functions 

that are sums of squares of nonlinear functions [1,2]. [7] Newton’s method for optimizing a performance index 

F(x) is  

                        𝑥𝑘+1 = 𝑥𝑘 − 𝐴𝑘
−1𝑔𝑘                                                                  (1)  

                       𝐴𝑘 = ∇2𝐹(𝑥)|𝑥=𝑥𝑘
                                                                     (2) 

                       𝑔𝑘 = ∇𝐹(𝑥)|𝑥=𝑥𝑘
                                                                       (3) 
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Where ∇2 𝐹(𝑥) is the Hessian matrix and 𝛻𝐹(𝑥) is the gradient.  Assume that F(x) is a sum of squares 

function: 

                       𝐹(𝑥) =  ∑ 𝑣𝑖
2𝑁

𝑖=1 (𝑥) = 𝑣𝑇(𝑥)𝑣(𝑥)                                         (4) 
 

then the gradient and Hessian matrix are: 

                 ∇𝐹(𝑥) = 2𝐽𝑇(𝑥)𝑣(𝑥)                                                                (5) 

                 ∇2𝐹(𝑥) = 2𝐽𝑇(𝑥)𝐽(𝑥) + 2𝑆(𝑥)                                              (6) 

where J(x) is the Jacobian matrix 

                        𝐽(𝑥) =

[
 
 
 
 
𝜕𝑣1(𝑥)

𝜕𝑥1

𝜕𝑣1(𝑥)

𝜕𝑥2
. . . .

𝜕𝑣1(𝑥)

𝜕𝑥𝑛

𝜕𝑣2(𝑥)

𝜕𝑥1

𝜕𝑣2(𝑥)

𝜕𝑥2
. . . .

𝜕𝑣2(𝑥)

𝜕𝑥𝑛

𝜕𝑣𝑁(𝑥)

𝜕𝑥1

𝜕𝑣𝑁(𝑥)

𝜕𝑥2
. . . .

𝜕𝑣𝑁(𝑥)

𝜕𝑥𝑛 ]
 
 
 
 

                                (7) 

And                𝑆(𝑥) = ∑ 𝑣𝑖(𝑥)∇2𝑣𝑖(𝑥)𝑁
𝑖=1                                                       (8) 

If S(x) is assumed to be small then the Hessian matrix can be approximated as: 

                 ∇2𝐹(𝑥) ≅ 2𝐽𝑇(𝑥)𝐽(𝑥)                                                               (9) 

Substituting Eq. (5) and Eq. (9) into Eq. (1), we achieve the Gauss-Newton method as: 

                 ∆𝑥𝑘 = −[𝐽𝑇(𝑥𝑘)𝐽(𝑥𝑘)]
−1 𝐽𝑇(𝑥)𝑣(𝑥𝑘)                                 (10) 

One problem with the Gauss-Newton method is that the matrix may not be invertible. This can be overcome 

by using the following modification to the approximate Hessian matrix: 

                       𝐺 = 𝐻 + 𝜇𝐼                                                                                (11) 

This leads to the Levenberg-Marquardt algorithm. 

                       ∆𝑥𝑘 = −[𝐽𝑇(𝑥𝑘)𝐽(𝑥𝑘) + 𝜇𝑘𝐼]
−1 𝐽𝑇(𝑥𝑘)𝑣(𝑥𝑘)                   (12) 

Using this gradient direction, and recompute the approximated performance index. If a smaller value is yield, 

then the procedure is continued with the 𝜇𝑘 divided by some factor 𝑔 > 1 . If the value of the performance 

index is not reduced, then 𝜇𝑘is multiplied by ϑ for the next iteration step. The key step in this algorithm is the 

computation of the Jacobian matrix. The elements of the error vector and the parameter vector in the Jacobian 

matrix (8) can be expressed as: 

                       𝑣𝑇 = [𝑣1 𝑣2 𝐾    𝑣𝑛] = [𝑒11 𝑒21  𝐾  𝑒𝑆𝑚1 𝑒𝑆𝑚2 𝐾 𝑒𝑆𝑚𝑄]                       (13) 

                 𝑥𝑇 = [𝑥1 𝑥2 𝐾    𝑥𝑁] =  [𝑤11
1 𝑤12

1   𝐾  𝑤𝑆1𝑅
1 𝑏1

1 𝐾  𝑏𝑆1
1  𝑤11

2  𝐾 𝑏
𝑆𝑀
𝑀 ]      (14) 

where the subscript N satisfies: 

                 𝑁 = 𝑄 × 𝑆𝑀                                                                               (15) 

and the subscript n in the Jacobian matrix satisfies: 

                 𝑛 = 𝑆1(𝑅 + 1) + 𝑆2(𝑆1 + 1) + 𝐿 + 𝑆𝑀(𝑆𝑀−1 + 1)        (16) 

Making these substitutions into Eq. (7), then the Jacobian matrix for multilayer network training can be 

expressed as: 

𝐽(𝑥) =

[
 
 
 
 
 
 
 
 
 

𝜕𝑒11

𝜕𝑤11
1

𝜕𝑒11

𝜕𝑤12
1 𝐿

𝜕𝑒11

𝜕𝑤
𝑆1𝑅
1

𝜕𝑒11

𝜕𝑏1
1 𝐿

𝜕𝑒21

𝜕𝑤11
1

𝜕𝑒21

𝜕𝑤12
1 𝐿

𝜕𝑒21

𝜕𝑤
𝑆1𝑅
1

𝜕𝑒21

𝜕𝑏1
1 𝐿

𝑀 𝑀 𝑀     𝑀    𝐿
𝜕𝑒

𝑆𝑀1

𝜕𝑤11
1

𝜕𝑒
𝑆𝑀1

𝜕𝑤12
1 𝐿

𝜕𝑒
𝑆𝑀1

𝜕𝑤
𝑆1𝑅
1

𝜕𝑒
𝑆𝑀1

𝜕𝑏1
1 𝐿

𝜕𝑒12

𝜕𝑤11
1

𝜕𝑒12

𝜕𝑤12
1 𝐿

𝜕𝑒12

𝜕𝑤
𝑆1𝑅
1

𝜕𝑒12

𝜕𝑏1
1 𝐿

𝑀 𝑀 𝑀      𝑀 ]
 
 
 
 
 
 
 
 
 

                     (17)                        

In standard backpropagation algorithm, the terms in the Jacobian matrix is calculated as: 

                       
𝜕𝐹̂(𝑥)

𝜕𝑥𝑙
=

𝜕𝑒𝑞
𝑇𝑒𝑞

𝜕𝑥1
                                                                             (18) 

For the elements of the Jacobian matrix, the terms can be calculated by: 

                       [𝐽]ℎ,𝑙 =
𝜕𝑣ℎ

𝜕𝑥𝑙
=

𝜕𝑒𝑘𝑞

𝜕𝑤𝑖𝑗
                                                                   (19) 
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Thus, in this modified Levenberg-Marquardt algorithm, we compute the derivatives of the errors, instead of 

the derivatives of the squared errors as adopted in standard backpropagation. Using the concept of 

sensitivities in the standard backpropagation process, here we define a new Marquardt sensitivity as: 

                       𝑆/0𝑖ℎ
𝑜/𝑚

=
𝜕𝑣ℎ

𝜕𝑛𝑖𝑞
𝑚 =

𝜕𝑒𝑘𝑞

𝜕𝑛𝑖𝑞
𝑚                                                              (20) 

Where ℎ = (𝑞 − 1)𝑆𝑀 + 𝑘. 

Using the Marquardt sensitivity with backpropagation recurrence relationship, the elements of the Jacobian 

can be further calculated by: 

                       [𝐽]ℎ,𝑙 =
𝜕𝑒𝑘𝑞

𝜕𝑤𝑖𝑗
𝑚 =

𝜕𝑒𝑘𝑞

𝜕𝑛𝑖𝑞
𝑚  

𝜕𝑛𝑖𝑞
𝑚

𝜕𝑤𝑖𝑗
𝑚 = 𝑆/0𝑖ℎ

𝑜/𝑚
 𝑎𝑗𝑞

𝑚−1                         (21) 

If 𝑥𝑙 is a bias, 

                       [𝐽]ℎ,𝑙 =
𝜕𝑒𝑘𝑞

𝜕𝑏𝑖
𝑚 =

𝜕𝑒𝑘𝑞

𝜕𝑛𝑖𝑞
𝑚  

𝜕𝑛𝑖𝑞
𝑚

𝜕𝑏𝑖
𝑚 = 𝑆/0𝑖ℎ

𝑜/𝑚
                                     (22) 

The Marquardt sensitivities can be computed using the same recurrence relations as the one used in the 

standard BP method, with one modification at the final layer. The Marquardt sensitivities at the last layer 

can be given by: 

                       𝑆/0𝑖ℎ
0/𝑚

=
𝜕𝑒𝑘𝑞

𝜕𝑛𝑖𝑞
𝑀 =

𝜕(𝑡𝑘𝑞−𝑎𝑘𝑞
𝑀 )

𝜕𝑛𝑖𝑞
𝑚 = − 

𝜕𝑎𝑘𝑞
𝑀

𝜕𝑛𝑖𝑞
𝑚 = {

−𝑓&𝑀(𝜕𝑛1𝑞
𝑚 ) 𝑖 = 1

0                 𝑖 ≠ 1
         (23) 

After applying the 𝑃𝑞 to the network and computing the corresponding output 𝑎𝑚
𝑞

 , the LMBP algorithm can 

be initialized by  

                       𝑆/0𝑞
0/𝑀

= −𝐹&𝑀(𝑛𝑞
𝑚)                                                           (24) 

Each column of the matrix should be backpropagated through the network so as to generate one row of the 

Jacobian matrix. The columns can also be backpropagated together using: 

                       𝑆/0𝑞
0/𝑚

= 𝐹&𝑀(𝑛𝑞
𝑚) (𝑊𝑚+1)𝑆𝑞

0/𝑚+1
                                (25) 

The entire Marquardt sensitivity matrices for the overall layers are then obtained by the following 

augmentation 

                       𝑆0
0/𝑚

= [𝑆1
0/𝑚

|𝑆2
0/𝑚

|𝐾|𝑆𝑄
0/𝑚+1

]                                            (26) 

7. Application 

After describing the optimal solution methods for production by using the five methods in fuzzy 

linear programming, we will now explain in more detail how to reach the optimal decision for the quantities 

produced and to be available in the company to prevent a deficit, by focusing on (demand quantities, 

production quantities) as inputs and the case, the revenues generated as outputs. Based on the fuzzy linear 

programming method through the model in the following ways: 

1- Robust ranking method. 
2- Central of gravity method. 

3- Pascal method. 

4- Graded mean and integration method. 

5- Bounded and decomposition method. 

The data was arranged and collected according to the following: 

The following tables represent the selling prices, daily production quantities, and daily order quantities. 

Table 1: Selling prices of products and production costs in Iraqi dinars 
Product Selling price Production cost 

gas oil 275000 99034 95704 85031 

fuel oil 100000 113500 109834 61871 

diesel oil 65000 93402 60436 30508 

naphtha : : : : 

light puffs : : : : 

heavy jet : : : : 

heavy kerosene : : : : 

liquid gas : : : : 

gasoline 300000 157610 154851 103637 

white oil 125000 106933 114905 69695 
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Table 2: Daily production quantities 

 Product Available 

quantity 

Planned 

 Quantity 

Actual quantity 

gas oil 1141 958 817 

fuel oil 3417 3255 3033 

diesel oil 620 485 310 

Naphtha : : : 

light puffs : : : 

heavy jet : : : 

heavy kerosene : : : 

liquid gas : : : 

gasoline 804 737 685 

white oil 869 497 390 
Table 3: Daily order quantities 

Product Highest order Actual Order Lowest Order 

gas oil 964 703 673 

fuel oil 3206 2945 2850 

diesel oil 610 425 300 

naphtha : : : 

light puffs : : : 

heavy jet : : : 

heavy kerosene : : : 

liquid gas : : : 

gasoline 622 571 563 

white oil 691 276 225 
Table 4: The needs of production inputs 

 

Product 

 

Cooling Water 

/m3 

 

Water vapors/m3 

 

Electric 

power/watt 

 

Fuel used/m3 

 

Gas oil 

2.928 3.401 4.815 2.955 

3.212 4.238 5.478 3.921 

4.496 6.075 6.555 4.593 

 

fuel oil 

2.928 3.401 4.815 2.955 

3.212 4.238 5.478 3.921 

4.496 6.075 6.555 4.593 

 

diesel oil 

2.928 3.401 4.815 2.955 

3.212 4.238 5.478 3.921 

4.496 6.075 6.555 4.593 

 

: 

: 

: : : : 

: : : : 

: : : : 

 

gasoline 

19.966 2.372 0.174 4.7 

23.4 3.219 1.953 5.55 

27.021 4.156 3.272 6.43 

 

white oil 

2.928 4.501 4.815 2.955 

3.212 5.238 5.478 3.921 

4.496 6.075 6.555 4.593 

The available 

quantity of 

180202 81200 3600722 100500 

300400 11440 6000722 200500 
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production 

supplies 

350000 150980 7201444 410200 

 

 

7.1 Mathematical model for the fuzzy linear programming problem 

 A fuzzy linear programming problem model was formulated depending on the data 

taken and the type of problem to be solved. Building the model first requires defining the decision 

variables that represent the quantity of products produced by the Beiji refinery, which are 10 products: 

𝑋1: gas oil  , 𝑋2: 𝑓𝑢𝑒𝑙 𝑜𝑖𝑙  ,𝑋3: 𝑑𝑖𝑒𝑠𝑒𝑙 𝑜𝑖𝑙, 𝑋4: 𝑛𝑎𝑝ℎ𝑡𝑎 , 𝑋5: 𝑙𝑖𝑔ℎ𝑡 𝑝𝑢𝑓𝑓𝑠  

𝑋6: ℎ𝑒𝑎𝑣𝑦 𝑗𝑒𝑡 , 𝑋7: ℎ𝑒𝑎𝑣𝑦 𝑘𝑒𝑟𝑜𝑠𝑒𝑛 , 𝑋8: 𝑙𝑖𝑞𝑢𝑖𝑑 𝑔𝑎𝑠 , 𝑋9: 𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒  

𝑋10: 𝑤ℎ𝑖𝑡𝑒 𝑜𝑖𝑙  
𝑋̃𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑡𝑖)       𝑖 = 1,2, …… . . ,10  

𝑃𝑗 = 𝑃𝑟𝑖𝑐𝑒              𝑗 = 1,2, …… . . ,10  

And that model consists of:  

✓ The objective function is a maximization function (selling prices - fuzzy production costs) 

𝑀𝑎𝑥 ( 𝑍1, 𝑍2, 𝑍3) = (275000) ∗ (𝑥1, 𝑦1, 𝑡1) + (100000) ∗ (𝑥2, 𝑦2, 𝑡2) + (65000) ∗
(𝑥3, 𝑦3, 𝑡3)+. . . . +(300000) ∗ (𝑥9, 𝑦9, 𝑡9) + (125000) ∗ (𝑥10, 𝑦10, 𝑡10) − (99034,95704,85031) ∗
(𝑥1, 𝑦1, 𝑡1) − (113500,109834,61871) ∗ (𝑥2, 𝑦2, 𝑡2) − (93402,60436,30508) ∗
(𝑥3, 𝑦3, 𝑡3)− . . . .  −(157610,154851,103637) ∗ (𝑥9, 𝑦9, 𝑡9) − (106933,114905,69695) ∗
(𝑥10, 𝑦10, 𝑡10)  

Subject to:  

Production constraints  
(𝑥1, 𝑦1, 𝑡1) ≤ (1141,958,817)   
(𝑥2, 𝑦2, 𝑡2) ≤ (3417,3255,3033)  

                   : 
(𝑥9, 𝑦9, 𝑡9) ≤ (804,737,685)  
(𝑥10, 𝑦10, 𝑡10) ≤ (869,497,390)  

Product Demand constraints 
(𝑥1, 𝑦1, 𝑡1) ≥ (964,703,673)   
(𝑥2, 𝑦2, 𝑡2) ≥ (3206,2945,2850)  

                       : 
(𝑥9, 𝑦9, 𝑡9) ≥ (622,571,563)  
(𝑥10, 𝑦10, 𝑡10) ≥ (691,276,255)  

Production requirement constraints  

✓ Cooling water constraints   
(2.928,3.212,4.496) ∗ (𝑥1, 𝑦1, 𝑡1) + (2.928,3.212,4.496) ∗ (𝑥2, 𝑦2, 𝑡2) + (2.928,3.212,4.496) ∗
(𝑥3, 𝑦3, 𝑡3)+  . . . +(19.966,3.42,7.021) ∗ (𝑥9, 𝑦9, 𝑡9) + (2.928,3.212,4.496) ∗ (𝑥10, 𝑦10, 𝑡10) ≤
(180202, 300400, 350000)   

✓ Water vapor constraints  

 (3.401,4.238,6.075) ∗ (𝑥1, 𝑦1, 𝑡1) + (3.401,4.238,6.075) ∗ (𝑥2, 𝑦2, 𝑡2) + (3.401,4.238,6.075) ∗
(𝑥3, 𝑦3, 𝑡3)+ . . . +(2.372,3.219,4.156) ∗ (𝑥9, 𝑦9, 𝑡9) + (4.501,5.238,6.075) ∗ (𝑥10, 𝑦10, 𝑡10) ≤
(81200,11440,150980) 

✓ Electric power constraints  

 (4.815,5.478,6.555) ∗ (𝑥1, 𝑦1, 𝑡1) + (4.815,5.478,6.555) ∗ (𝑥2, 𝑦2, 𝑡2) + (4.815,5.478,6.555) ∗
(𝑥3, 𝑦3, 𝑡3)+ . . . +(0.174,1.953,3.272) ∗ (𝑥9, 𝑦9, 𝑡9) + (4.815,5.478,6.555) ∗ (𝑥10, 𝑦10, 𝑡10) ≤
(3600722,6000722,7201444) 

✓ Fuel used constraints  

 (2.955,3.921,4.593) ∗ (𝑥1, 𝑦1, 𝑡1) + (2.955,3.921,4.593) ∗ (𝑥2, 𝑦2, 𝑡2) + (2.955,3.921,4.593) ∗
(𝑥3, 𝑦3, 𝑡3)+ . . . +(4.7,5.55,6.43) ∗ (𝑥9, 𝑦9, 𝑡9) + (2.955,3.921,4.593) ∗ (𝑥10, 𝑦10, 𝑡10) ≤
(100500,200500,410200) 

Non-negative constraint 

        (𝑥𝑖, 𝑦𝑖 , 𝑡𝑖) ≥ 0   
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After removing the fuzzy from the model by using the five methods, which are (Robust ranking 

method, Central of gravity method, Pascal method, Graded mean and integration method, Bounded and 

decomposition method) and solving the model in each method, a comparison was made between the 

results of the methods used, as we found that there is a difference in the optimal quantities to be produced 

in all the methods used in the research in addition to there is a difference in the value of the net profit, as 

Table (5) shows the differences between the quantities of products that must be produced in each method 

used. 

Table 5: A comparison of the methods used to remove fuzzy from the FLP problem 

Name of 

Product 

Actual 
quantity 

Robust 
Ranking 
Method 

Central of 
Gravity 
Method 

Pascal  

Method 
Graded Mean 

Integration 
Reorientation 

Method 

Bounded and 
Decomposition 

Method 

gas oil 817 979.24 972.03 968.42 964.81 1141 

fuel oil 3033 3225.33 3235.32 3240.32 2972.67 3417 

diesel oil 445 465.00 471.67 475.00 478.33 620 

naphtha : : : : : : 

light 

puffs 

: : : : : : 

heavy 

jet 

: : : : : : 

heavy 

kerosene 

: : : : : : 

liquid 

gas 

: : : : : : 

gasoline 685 744.83 742.38 741.16 739.93 804 

white oil 397 629.48 585.31 563.23 541.14 869 

Net 

profit/ 

IQD 

498615140 645244602.75 572409206.24 536988667.41 502724408.9

9 

993423791 

 

 
In table (5), profits in the production of five products and which are (Gas oil, 

Naphtha, Heavy jet, Gasoil, and white oil) because the cost of production is lower 

than the price of the sell, while the production of five products and which are (Fuel 

oil, Diesel oil, Light puffs, Heavy kerosene, and Liquid gas) causes losses because 

the cost of production is higher than the price of selling so the production has tended 

to meet the costs of demand only to reduce losses in all ways above. The net profit of 

the five methods was higher than the net profit achieved in the Northern Refineries 

(Al-Beiji Refinery) of (498615140) dinars, with the highest net profit level achieved 

at the bounded and decomposition method of the results achieved and a value of 

(993423791) dinars. 

 

7.2 Building a Model Using Artificial Neural Networks 

To reach the best quantities (production, demand) for each of the company's 

ten products. Creating 30 models for data of five methods of fuzzy linear 

programming problems by using Monte Carlo simulation, will be based on 

programming (Excel 2019) and solving it using neural networks based on the 

(MatlabR2019b) program, but before starting, the model data must be configured to 

suit the requirements of artificial neural networks as shows in the following table. 
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Table 6: Represents the inputs and outputs 

a. Robust ranking method  

Robust ranking method is the method to fuzziness for removing fuzzy in fuzzy linear programming 

[4]. After the training process is completed for the data obtained from the robust ranking method, 

we have the neural networks as in Fig.3 shows the neural networks in the final form after the 

completion of the training process of the Robust ranking method. 

Table 7: Represents the outputs of neural networks for the robust ranking method 

Sample 1 2 3 4 5 6 

O
u
tp

u
t 

X1 526.66 655.25 -1082.45 -89.71 626.82 389.44 

X2 3849.18 5382.59 8351.77 5008.80 1374.38 5557.40 

X3 1627.27 2056.35 2964.03 2656.76 2941.91 2495.33 

X4 -702.30 -1693.66 -2035.45 -2488.12 -1212.30 -2433.11 

X5 326.30 -78.59 -857.75 -204.18 -313.60 -306.49 

X6 -4296.81 -2807.36 -1749.61 -1688.17 -2647.59 -2814.41 

X7 -237.83 345.86 155.35 -537.43 151.14 -361.42 

X8 111.19 58.46 52.56 137.50 -9.04 -174.04 

X9 -15.74 -934.37 -1280.57 -1550.76 -2239.64 -869.45 

X1

0 

567.99 761.31 988.58 1613.78 1478.90 1078.28 

Z 460375474.31 432008302.53 1373048427.1

1 

1044726661.0

3 

603570659.05 250096627.42 

Sample 7 8 9 10 11 12 

O u t p u t X1 164.00 467.13 1453.13 1590.80 1624.11 2420.51 
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X2 1766.48 742.43 -1389.91 -3771.83 68.85 -203.86 

X3 3176.97 2063.81 2736.83 2691.36 1684.84 1590.74 

X4 -2395.11 -1037.59 -1160.09 -1021.23 -2232.34 -1558.30 

X5 453.23 1493.95 2764.46 2798.15 2946.35 2254.41 

X6 -2078.55 -1066.67 -2715.09 -1977.41 -1035.10 -971.62 

X7 333.32 -320.96 921.25 1019.54 967.04 208.39 

X8 -194.68 -105.83 219.44 267.94 -45.77 -155.04 

X9 -89.24 1538.98 570.69 413.60 1335.63 899.27 

X1

0 

972.81 1043.85 1099.02 1183.28 1499.52 1167.92 

Z 1175043333.3

0 

582795482.90 507693985.55 1039970073.7

4 

538551054.39 1024362702.90 

Sample 13 14 15 16 17 18 

O
u
tp

u
t 

X1 214.68 487.19 -5.72 -528.18 -1142.09 -2105.35 

X2 -4739.12 1923.19 6480.44 6651.49 6516.73 10086.54 

X3 1612.60 2218.07 1953.72 1438.46 2804.16 2775.76 

X4 -532.00 -739.42 -2150.27 -1375.07 -1805.12 -3066.56 

X5 2186.21 3163.52 3547.99 3328.11 2402.63 1833.13 

X6 343.38 -1614.16 -2966.16 -2290.23 -829.51 -822.35 

X7 1051.77 212.03 572.54 818.56 474.40 -1243.07 

X8 -128.44 -65.26 -275.95 -115.91 -150.73 -83.67 

X9 1126.09 1059.46 -781.77 1993.53 706.26 1378.98 

X1

0 

777.78 535.71 656.49 753.51 765.18 998.02 

Z 898397436.93 1361986373.3

8 

973628572.93 513931866.61 1168219398.3

8 

758772870.05 

Sample 19 20 21 22 23 24 

 X1 -1518.09 -1635.67 371.27 -1359.19 577.04 724.01 

X2 6752.09 6792.75 1172.94 5047.45 1429.72 -6303.88 

X3 2257.52 2767.65 3252.17 3398.19 2427.39 2216.93 

O
u
tp

u
t 

X4 -3378.22 -1333.94 -1981.15 -2363.40 -2371.87 -1209.58 

X5 2387.48 1900.20 2010.51 2902.88 2599.90 1679.11 

X6 -1390.59 -486.84 211.70 -1675.42 -1775.23 -851.55 

X7 -377.95 -1902.16 -114.65 299.02 71.18 -509.79 

X8 -61.90 -6.57 102.25 183.44 12.99 -162.25 

X9 -50.47 3268.00 630.93 85.32 113.74 557.54 

X1

0 

1381.62 1222.04 1003.46 1181.35 1378.25 1309.22 

Z -33564971.60 45657152.15 629468615.08 785031856.72 1082901269.0

0 

1669729607.24 

Sample 25 26 27 28 29 30 

O
u
tp

u
t 

X1 1096.35 8.57 1762.51 1703.15 1758.13 1884.12 

X2 -4572.88 -7037.61 -2674.91 -6498.42 -1144.68 -1989.88 

X3 1488.47 1419.79 718.42 1174.90 688.26 -312.52 

X4 -2008.50 -2310.64 -1572.98 -658.24 -273.30 772.30 
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X5 1472.72 1439.92 1029.10 832.17 1529.54 -109.74 

X6 -1664.02 -1805.00 -1874.31 -1586.39 -216.82 391.75 

X7 810.70 1064.20 -215.33 1306.01 2388.12 2065.70 

X8 -126.36 82.04 -75.72 -127.10 -204.40 -15.14 

X9 182.23 -813.36 1835.58 -1167.06 121.59 -598.52 

X1

0 

1073.50 1168.22 1082.65 631.41 365.83 451.79 

Z 970661671.05 1225012968.1

0 

1490575710.2

4 

2035965970.2

3 

1307605846.8

9 

1840553318.66 

 

 

In Figure (4) the simulation results of the robust ranking method, which depends on the coefficient of 

determinations value, which values between (0,1) to determine the acceptability of the simulation results 

in fuzzy linear programming. The simulation results of the robust ranking method were successful but did 

not reach the optimum level in decision-making, as the value of the coefficient of determinations ranged 

between (0.82-0.86), so to get better results we will repeat the training process for several attempts to 

reach more accurate results. 

b.  Central of gravity method  

Central of gravity method is the method to fuzziness for removing fuzzy in fuzzy linear 

programming [10]. After the training process is completed for the data obtained from the central of gravity 

method, we have the neural networks as in Fig.5 shows the neural networks in the final form after the 

completion of the training process of the central of gravity method. 

Table 8: Represents the outputs of neural networks for the central of gravity method 
Sample 1 2 3 4 5 6 

O
u
tp

u
t 

X1 993.45 1311.23 1074.02 909.46 944.12 902.63 

X2 2861.07 -1290.10 2788.55 3052.50 3187.49 3524.78 

X3 555.88 401.84 273.09 168.30 476.43 563.57 

X4 1079.95 781.68 1025.10 1120.91 1427.20 1134.85 

X5 992.05 889.43 603.69 604.81 618.62 352.32 

X6 530.10 1747.63 1462.12 1615.53 1870.21 1906.53 

X7 551.73 970.53 767.87 670.12 1050.56 841.14 

X8 257.00 68.47 571.17 352.80 530.39 319.27 

X9 556.09 424.59 803.94 349.67 725.22 566.32 

X10 586.34 -167.30 494.98 494.39 397.11 670.10 

Fig.3: NN in the final image after completing the 

training process method of robust ranking method 

Fig.4: NNs training regression of robust ranking method 
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Z 719714680.41 5602094.28 543124175.79 491853852.16 443060360.76 647292849.54 

Sample 7 8 9 10 11 12 

O
u

tp
u

t 

X1 1214.57 1449.40 943.32 1224.59 1361.67 1318.73 

X2 3780.37 5260.83 4291.77 4352.58 3667.46 4116.02 

X3 218.43 107.70 363.21 163.83 380.66 203.95 

X4 1422.47 958.63 1562.02 1332.29 1302.34 1157.74 

X5 557.33 111.45 744.66 606.76 218.68 494.61 

X6 1871.22 1021.87 1440.07 1818.29 1572.15 1441.49 

X7 1064.51 1493.72 1207.14 1286.42 1040.82 1200.20 

X8 366.10 133.30 227.21 261.36 436.71 522.80 

X9 377.16 688.20 452.61 663.90 530.76 465.20 

X10 800.12 512.20 551.44 494.43 390.76 757.00 

Z 492584057.02 506473067.89 544889238.90 467943818.38 569235072.62 570207071.56 

Sample 13 14 15 16 17 18 

O
u
tp

u
t 

X1 1100.21 1010.31 1035.72 1678.16 1128.14 1623.26 

X2 4288.42 4155.56 646.06 871.47 3114.32 2554.29 

X3 255.25 286.02 720.31 454.51 509.39 71.56 

X4 2163.01 1429.21 2118.50 1493.55 1350.37 1274.70 

X5 365.36 405.90 1103.51 873.32 351.95 129.20 

X6 2716.46 1383.60 3556.38 2306.28 1643.50 1520.46 

X7 715.93 926.36 -960.40 -1275.43 954.34 1412.58 

X8 -58.57 313.88 383.31 175.37 364.76 211.27 

X9 600.53 503.38 870.25 900.56 753.27 715.75 

X10 233.23 656.08 590.01 496.57 955.28 894.93 

Z 2170185.68 665905385.44 341911291.58 655177408.64 899110807.72 746628231.53 

Sample 19 20 21 22 23 24 

 X1 1078.19 1557.16 1000.87 -185.10 1050.93 655.42 

X2 2270.18 668.86 1408.04 5319.21 1756.63 2725.65 

X3 103.55 765.71 489.28 631.44 67.89 -107.96 

O
u
tp

u
t 

X4 1488.41 1429.76 1720.77 1417.55 1205.15 1311.32 

X5 547.66 673.66 468.78 172.02 345.12 114.99 

X6 1787.71 2786.70 1899.40 1994.00 2473.34 2154.18 

X7 1448.31 2542.74 1795.06 3534.94 1992.67 890.76 

X8 338.01 429.44 68.59 137.10 437.12 389.63 

X9 918.43 773.59 741.46 592.10 573.99 589.40 

X10 837.91 1259.24 1033.12 1205.70 1051.94 1175.37 

Z 792786882.35 433754759.88 723766094.21 896516146.90 753442448.93 907810246.64 

Sample 25 26 27 28 29 30 

O
u

tp
u

t 

X1 1094.44 1089.03 1052.90 1612.62 1137.63 1042.10 

X2 1656.44 1604.90 2023.58 -679.49 1974.15 7172.81 

X3 123.71 410.90 539.37 728.75 332.57 259.28 

X4 1344.70 1319.46 1479.49 1020.72 1466.60 1208.18 

X5 274.11 358.91 328.88 650.53 430.53 -221.38 

X6 2189.34 2179.33 2345.38 2690.53 2399.79 2469.40 

X7 1932.16 2099.57 1990.51 1742.77 1936.07 4000.77 

X8 562.30 318.66 403.69 384.85 131.15 -264.58 

X9 737.69 524.84 451.75 828.92 602.39 1295.52 

X10 971.11 815.15 675.08 994.46 887.71 828.66 

Z 738105308.01 797603735.83 645796319.39 701349244.64 550708066.75 320626436.36 
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In Figure (5) the simulation results of the central of gravity method, which depends on the coefficient of 

determinations value, which values between (0,1) to determine the acceptability of the simulation results 

in fuzzy linear programming. The simulation results of the central of gravity method were successful but 

did not reach the optimum level in decision-making, as the value of the coefficient of determinations 

ranged between (0.51-0.99), so to get better results we will repeat the training process for several attempts 

to reach more accurate results. 

c. Pascal method  

Pascal method is the method to fuzziness for removing fuzzy in fuzzy linear programming [6]. 

After the training process is completed for the data obtained from the pascal method, we have the neural 

networks as in Fig7 shows the neural networks in the final form after the completion of the training 

process of the pascal method. 

Table 9: Represents the outputs of neural networks for the pascal method 
Sample 1 2 3 4 5 6 

O
u

tp
u
t 

X1 978.71 -720.36 1263.51 1073.24 1063.45 1504.52 

X2 3366.14 3282.78 3399.75 3791.32 3416.00 3008.71 

X3 709.04 659.26 543.10 446.53 192.85 518.72 

X4 973.76 2254.27 1505.93 1181.73 1479.60 1479.04 

X5 514.29 1109.57 789.02 446.21 762.90 722.37 

X6 1309.72 1518.91 1505.76 1086.85 1370.57 1153.22 

X7 935.24 1003.49 665.23 738.92 732.58 887.03 

X8 345.40 387.55 149.75 205.35 378.40 -222.48 

X9 748.60 1504.45 687.36 860.19 482.64 1018.68 

X10 1053.37 833.98 447.14 122.00 720.06 532.92 

Z 636058169.23 431967131.63 709930165.30 610175742.83 546759974.04 608510575.29 

Sample 7 8 9 10 11 12 

O
u
tp

u
t 

X1 1139.81 1151.44 1621.48 1444.48 1107.78 1093.32 

X2 3360.22 3959.48 3445.13 2830.99 2622.12 3066.11 

X3 598.73 104.77 358.21 546.16 529.30 531.70 

X4 1359.03 1052.77 1501.11 1500.85 1670.61 1834.33 

X5 422.64 576.59 233.92 866.07 435.29 837.13 

X6 1661.21 1854.70 1337.31 753.84 1269.27 1186.52 

Fig.5: NN in the final image after completing the 

training process method of gravity method 
Fig.6: NN training regression of gravity method 
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X7 1035.56 1042.73 1003.28 1077.15 806.85 860.41 

X8 364.13 22.82 126.55 146.10 281.26 537.08 

X9 475.18 484.20 746.74 813.92 835.15 1190.65 

X10 491.76 559.71 229.98 146.03 326.29 560.41 

Z 576425861.70 1072315393.01 618241025.22 670331705.76 634068209.78 616167910.33 

Sample 13 14 15 16 17 18 

O
u

tp
u

t 

X1 2932.43 1339.59 1137.15 178.71 1312.28 1423.60 

X2 3019.03 2541.37 2860.76 4118.52 2765.70 2960.82 

X3 294.73 643.21 585.36 630.78 313.34 461.89 

X4 1216.73 1709.15 1071.45 524.82 1600.54 1869.45 

X5 524.71 482.24 750.35 611.60 585.81 595.61 

X6 972.43 1164.88 1884.56 858.04 1133.01 1355.77 

X7 1582.34 857.60 897.25 1063.69 893.52 973.12 

X8 244.92 144.08 187.48 25.61 277.47 86.83 

X9 799.87 896.78 672.86 852.11 651.21 627.80 

X10 655.34 620.82 907.25 192.89 347.92 617.25 

Z 601911998.66 510837245.33 351997616.42 552937539.99 475437320.59 445660401.35 

Sample 19 20 21 22 23 24 

 X1 1695.36 2679.25 1603.67 695.24 1350.56 1620.23 

X2 2944.32 2776.86 3003.44 3896.45 3475.21 2729.32 

X3 532.33 158.93 354.06 483.01 433.23 447.84 

O
u
tp

u
t 

X4 1875.71 1382.27 1625.15 1601.71 1472.61 1589.68 

X5 276.87 558.49 817.26 183.65 769.44 1608.34 

X6 1367.88 1012.68 1126.30 1369.54 900.72 704.58 

X7 1135.12 1247.23 1225.87 1021.31 1034.06 1017.57 

X8 114.45 469.82 345.47 313.42 383.09 502.02 

X9 900.64 688.76 974.90 933.45 469.05 993.34 

X10 294.61 -73.76 271.33 245.41 493.26 858.73 

Z 457976708.47 636265753.36 550685228.25 124031335.78 503098928.10 180084159.40 

Sample 25 26 27 28 29 30 

O
u
tp

u
t 

X1 1463.75 1161.98 1067.97 3988.72 1088.51 -1556.32 

X2 2737.39 2787.45 3113.86 2312.60 3025.49 6767.08 

X3 245.67 560.78 630.35 471.16 359.92 211.18 

X4 1498.27 1920.44 1468.19 1385.12 1207.45 614.37 

X5 598.21 477.51 572.71 440.31 604.88 192.29 

X6 838.29 1131.78 1703.00 364.91 1225.39 885.31 

X7 747.55 707.72 868.91 840.69 575.98 955.62 

X8 492.62 249.56 423.20 485.19 457.31 347.47 

X9 717.48 659.59 1183.51 1251.64 987.44 364.27 

X10 616.55 411.86 532.14 319.92 655.10 871.64 
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In Figure (8) the simulation results of the pascal method, which depends on the coefficient of determinations 

value, which values between (0,1) to determine the acceptability of the simulation results in fuzzy linear 

programming. The simulation results of the pascal method were successful but did not reach the optimum level 

in decision-making, as the value of the coefficient of determinations ranged between (0.88-0.99), so to get 

better results we will repeat the training process for several attempts to reach more accurate results. 

d. Graded mean and integration method  

Graded mean and integration method is the method to fuzziness for removing fuzzy in fuzzy linear 

programming [6]. After the training process is completed for the data obtained from the graded mean and 

integration method, we have the neural networks as in Fig.9 shows the neural networks in the final form after 

the completion of the training process of the graded mean and integration method. 

Table (10): Represents the outputs of neural networks for the graded mean and integration method 

Sample 1 2 3 4 5 6 

O
u

tp
u

t 

X1 1332.85 1354.18 958.32 726.44 779.90 789.20 

X2 2175.52 2354.65 2600.22 2992.02 2481.99 2733.68 

X3 705.90 585.11 441.26 521.62 440.88 311.34 

X4 -894.97 524.05 849.30 982.96 1017.86 1132.14 

X5 716.33 891.79 622.94 524.72 522.46 779.04 

X6 755.31 635.87 1303.48 1344.72 1409.32 1258.04 

X7 662.31 389.82 457.61 696.13 538.65 462.85 

X8 214.10 397.83 281.84 265.08 232.08 138.09 

X9 665.10 789.01 219.27 341.74 252.72 269.04 

X10 1589.39 1271.25 426.04 396.80 456.96 426.53 

Z 193831189.64 279049269.72 429594638.50 412464031.07 443579194.03 468463565.38 

Sample 7 8 9 10 11 12 

O
u
tp

u
t 

X1 922.38 798.17 835.92 766.94 888.72 809.09 

X2 2361.12 1322.87 1570.43 1349.40 4543.11 3774.64 

X3 494.42 548.01 466.15 420.90 543.88 196.75 

X4 967.41 1068.97 1010.96 1895.57 2096.35 1654.52 

X5 611.77 658.24 459.63 487.37 672.65 424.89 

X6 986.68 169.77 1200.90 1926.84 2169.47 1340.03 

Fig.7: NNs in the final image after completing the 

training process method of pascal method 
Fig.8: NNs training regression of pascal method 
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X7 449.24 488.84 474.54 534.63 529.29 389.58 

X8 48.04 321.72 403.23 228.10 247.79 440.51 

X9 266.36 786.24 334.79 719.79 1442.59 672.05 

X10 507.36 949.10 602.37 876.97 573.69 301.83 

Z 387707204.44 101461572.03 292931765.04 418118228.42 263029687.71 195835526.80 

Sample 13 14 15 16 17 18 

O
u

tp
u

t 

X1 762.66 877.36 905.94 778.03 875.95 831.81 

X2 1475.32 1479.79 690.96 1514.86 1649.00 1629.08 

X3 427.95 448.79 124.96 556.09 394.35 564.70 

X4 1012.19 846.53 1096.56 1032.56 896.87 856.40 

X5 432.32 427.93 823.33 599.37 365.03 595.68 

X6 1495.26 1575.62 2368.06 1574.23 1386.99 1208.91 

X7 579.80 527.06 794.40 596.38 559.80 535.33 

X8 223.95 167.98 282.28 355.77 49.95 142.86 

X9 288.82 356.44 -523.90 169.12 332.29 156.15 

X10 699.89 732.68 1221.58 967.86 844.67 864.65 

Z 283412383.95 316072194.83 356843686.48 316219473.75 313321173.05 313363987.64 

Sample 19 20 21 22 23 24 

 X1 700.67 747.93 813.00 785.50 765.36 864.37 

X2 1525.32 1672.77 -538.84 1897.24 1689.14 1611.51 

X3 578.04 573.20 1246.91 611.94 401.89 683.98 

O
u
tp

u
t 

X4 827.72 809.60 1265.79 615.74 621.61 423.58 

X5 478.39 520.20 568.67 577.86 351.64 378.55 

X6 1017.23 1103.70 1631.24 868.47 839.21 683.22 

X7 386.48 433.30 835.50 446.64 488.01 558.77 

X8 142.51 167.88 198.91 122.94 94.78 186.67 

X9 244.91 245.62 467.66 231.18 171.08 171.15 

X10 827.61 843.26 930.33 772.60 1040.08 1023.79 

Z 279721478.37 272200229.22 534293840.13 329700680.36 372776160.94 362964654.24 

Sample 25 26 27 28 29 30 

O
u

tp
u
t 

X1 816.87 590.14 954.69 1423.16 975.98 866.56 

X2 1467.12 -360.86 1554.11 2940.97 1452.07 1441.40 

X3 675.18 630.87 665.23 647.23 796.26 872.43 

X4 528.77 547.52 628.78 1084.52 705.87 656.81 

X5 406.95 701.80 359.56 263.31 549.78 503.69 

X6 615.83 -10.58 620.08 586.87 809.51 828.17 

X7 451.53 738.16 635.09 418.40 612.22 523.12 

X8 84.36 75.22 52.52 409.28 383.38 34.35 

X9 199.13 -61.02 135.63 64.02 130.34 238.65 

X10 960.46 1396.17 1217.71 435.68 1033.62 1055.91 

Z 336517592.38 771726064.02 363462911.49 111051326.39 353831761.87 445311992.87 
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In Figure (10) the simulation results of the graded mean integration representation method, which depends 

on the coefficient of determinations value, which values between (0,1) to determine the acceptability of the 

simulation results in fuzzy linear programming. The simulation results of the graded mean integration 

representation method were successful but did not reach the optimum level in decision-making, as the value 

of the coefficient of determinations ranged between (0.80-1), so to get better results we will repeat the 

training process for several attempts to reach more accurate result. 

e. Bounded and decomposition method  

Bounded and decomposition method is the method to fuzziness for removing fuzzy in fuzzy 

linear programming [5]. After the training process is completed for the data obtained from the bounded 

and decomposition method, we have the neural networks as in Fig.11 shows the neural networks in the 

final form after the completion of the training process of the bounded and decomposition method. 
 

Table (11): Represents the outputs of neural networks for the bounded and decomposition method 

Sample 1 2 3 4 5 6 

O
u

tp
u

t 

X1 990.59 1103.00 1437.08 1367.32 -17.77 554.24 

X2 4833.16 -3381.03 2847.79 4116.45 4453.43 4778.89 

X3 1512.00 1299.47 1409.11 994.46 876.20 921.74 

X4 1543.27 1491.34 1945.29 1612.21 1552.10 2011.15 

X5 273.44 457.83 375.36 597.90 722.03 694.69 

X6 2049.95 2361.79 1755.11 2451.78 2871.29 2848.93 

X7 1108.36 834.42 1039.79 822.36 976.08 1002.72 

X8 526.18 496.35 660.14 896.40 758.79 733.80 

X9 777.08 689.08 530.43 377.02 744.25 712.61 

X10 881.33 1483.01 1115.13 1505.01 1355.92 1387.67 

Z 1112047179.71 743352648.46 978409479.61 843921534.12 801211783.12 892486825.62 

Sample 7 8 9 10 11 12 

O
u
tp

u
t 

X1 808.43 2014.56 969.83 416.05 424.75 1299.43 

X2 4458.52 -2747.11 4251.73 4750.32 5144.28 5487.82 

X3 681.42 536.36 880.67 -96.37 -123.79 219.33 

X4 1747.59 2224.99 1821.87 2093.33 1858.83 2288.28 

X5 322.11 166.81 679.72 878.23 418.01 91.60 

Fig.9: NNs in the final image after completing the training 

process method of graded mean and integration method 
Fig.10: NNs training regression of graded mean and  

integration method 
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X6 1765.83 3453.21 2679.90 1718.69 2255.17 2156.31 

X7 1047.58 1321.77 1516.73 1259.65 1319.83 1076.48 

X8 607.75 332.14 457.69 513.42 296.25 491.65 

X9 871.59 1015.68 769.29 1383.68 1393.33 1371.53 

X10 643.61 624.71 1188.08 1140.63 1214.06 385.57 

Z 881687868.02 1943043833.33 914906410.67 969394534.15 955040327.49 1046795923.23 

Sample 13 14 15 16 17 18 

O
u

tp
u

t 

X1 1622.84 1115.49 885.94 883.31 393.72 1481.44 

X2 6194.24 6291.57 20587.68 5124.50 6455.50 5708.08 

X3 556.89 1184.89 971.18 1742.77 1495.71 1213.07 

X4 2338.99 1466.10 208.68 1937.89 2596.24 2281.49 

X5 228.21 584.07 57.89 887.78 423.02 619.24 

X6 2229.41 1791.23 1407.79 463.16 2204.29 1994.04 

X7 948.02 995.38 890.82 1170.10 1332.13 1468.48 

X8 618.49 905.84 799.81 509.17 323.58 420.36 

X9 1403.63 909.27 34.81 794.43 1076.59 1192.88 

X10 330.60 326.80 -614.74 -163.30 92.26 38.21 

Z 1291331349.28 1252947743.41 1108546389.54 1483452892.89 1556699729.19 1379510378.30 

Sample 19 20 21 22 23 24 

 X1 821.18 159.91 313.84 -211.38 880.62 841.33 

X2 4944.74 5572.12 5279.54 15107.27 7036.07 6127.90 

X3 996.26 832.27 1419.15 1617.64 909.26 813.08 

O
u
tp

u
t 

X4 1798.79 2339.48 2839.99 1755.77 2439.96 4339.33 

X5 765.73 563.38 706.32 1016.78 1038.13 1208.54 

X6 1301.07 2058.41 1393.03 126.78 1778.52 756.13 

X7 993.80 1358.03 1338.45 1416.65 1118.36 1367.54 

X8 687.47 524.87 466.15 323.70 454.56 367.94 

X9 432.47 660.08 -122.12 502.22 2098.24 1978.44 

X10 546.13 445.29 394.12 22.81 17.09 -213.96 

Z 1190713635.91 1309831560.83 1227348258.07 1673252634.56 1316066888.96 1227773760.09 

Sample 25 26 27 28 29 30 

O
u

tp
u

t 

X1 1835.32 985.84 12.55 587.69 386.79 406.92 

X2 9467.91 7338.19 6489.56 -3050.08 8094.59 6513.16 

X3 723.70 214.48 33.63 692.98 708.03 472.90 

X4 2363.80 2231.35 2901.31 3545.12 2881.97 3880.09 

X5 989.23 954.78 951.36 706.82 200.25 157.03 

X6 1754.25 2750.79 1527.45 1090.05 1437.73 762.04 

X7 1489.85 1856.04 1749.37 1717.75 1339.60 1275.71 

X8 386.26 285.15 124.02 5.06 54.60 -54.67 

X9 1667.24 1447.14 1218.26 1284.33 1055.32 -425.17 

X10 530.09 244.33 714.42 905.96 676.52 135.88 

Z 1346993785.09 1108785792.53 1033244126.66 1429243451.77 941183291.09 703130016.76 
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In Figure (12) the simulation results of the bounded and decomposition method, which depends on the 

coefficient of determinations value, which values between (0,1) to determine the acceptability of the 

simulation results in fuzzy linear programming. The simulation results of the bounded and decomposition 

method were successful but did not reach the optimum level in decision-making, as the value of the 

coefficient of determinations ranged between (0.993-0.997), so to get better results we will repeat the 

training process for several attempts to reach more accurate results. 

Table 12: The comparison between five different methods by back propagation NN training  

 Training Validation Test All Superlative 

Bounded and 

decomposition 

0.99707 0.95615 0.99325 0.98076 1 

Pascal 0.99607 0.84558 0.88208 0.94644 2 

Graded mean and 

integration 

1 0.83429 0.80299 0.93347 3 

Central of gravity 0.99502 0.97767 0.51047 0.91993 4 

Robust ranking 0.82772 0.91788 0.86305 0.83286 5 

 

In table 12, shows the comparisons between five methods of fuzzy linear programming such as (Robust 

ranking, Central of gravity, Pascal, Graded mean, and integration, and bounded and decomposition) by using 

artificial neural networks. As a result, we realize that bounded and decomposition is the best method because 

the coefficient of determinations ranged between (0.993-0.997) and all test coefficient of determinations is 

(0.98). 

8. Conclusion  

Providing solutions to linear programming problems through the neural network approach is an interesting 

area of research. The results showed the efficiency of the fuzzy linear programming model, which was 

formulated to deal with problems of an unstable and fluctuating nature to reach the best possible solutions. 

The results showed that the highest maximum profit is (993423791) million dinars when using the bounded 

and decomposition method for the linear programming problem, which is higher than the profits achieved 

by the research company by (50%). Therefore, the use of this method by the liquidator will increase the 

percentage of profits from what is currently available by half, and by using ANN, show that the neural 

Fig.11: NNs in the final image after completing the training 

process method of bounded and decomposition method   
Fig.12: NNs training regression of bounded and 

decomposition method 
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network results when compared with five methods of fuzziness in a linear programming model, the best 

method to get maximum profit was up to 98% in a bounded and decomposition method increase from 

993423791 IQD to 1943043833 IQD in a day.  as it was found that by increasing the process of training the 

network, the results are better each time, as it appears through the results of the fifth experiment that it gave 

results close to the results reached in the fuzzy linear programming models.  Thus, the implementation of 

the ANN in solving LP with a neural network will produce efficient results. such that the results showed 

that the bounded and decomposition is the best method because the correlation coefficient ranged between 

(0.993-0.997) and all test correlation coefficients is (0.98), this is what brings the company's total profits. 

The results were implemented by the software packages Python 3.9 and MATLAB R2019b. 
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